Programa de Investigación y Desarrollo de Fuentes Alternativas de Materias Primas y Energía

Directora: Dra. Ana Lea Cukierman

Integrantes:
Dr. Pablo Bonelli
Ing. Edward Gómez Delgado
Dr. Luciano Gurevich
Dra. Gisel Nunell
Dr. Héctor Prado
Ing. Alex Schwengber

Publicaciones
  1. Gomez-Delgado E. et al., Biogas upgrading via CO2 removal onto tailor-made highly ultramicroporous adsorbent materials, Journal of the Energy Institute, 109, 101296, (2023-08-01). doi:10.1016/j.joei.2023.101296 (0 citas)
  2. Ledesma B. et al., Batch and Continuous Column Adsorption of p-Nitrophenol onto Activated Carbons with Different Particle Sizes, Processes, 11, 2045, (2023-07-01). doi:10.3390/pr11072045 (0 citas)
  3. Cukierman A.L. et al., Textile Waste Conversion into Valuable Products for Environmental Impact Abatement, Environmental Footprints and Eco-Design of Products and Processes, (2023-01-01). SCOPUS_ID:85146220453 (0 citas)
  4. Kwiatkowski M. et al., Mathematical analysis of the effect of process conditions on the porous structure development of activated carbons derived from Pine cones, Scientific Reports, 12, 15301, (2022-12-01). doi:10.1038/s41598-022-19383-2 (2 citas)
  5. Nunell G.V. et al., Effectiveness of activated carbons developed by different strategies in the removal of diclofenac sodium and salicylic acid from water, Journal of Porous Materials, 29, 1309-1319, (2022-10-01). doi:10.1007/s10934-022-01252-y (2 citas)
  6. Suarez Anzorena R. et al., Ce–Zr-Sm ternary oxides synthesized via a template free urea-hydrothermal method, Ceramics International, 48, 25714-25722, (2022-09-15). doi:10.1016/j.ceramint.2022.05.243 (0 citas)
  7. Gomez-Delgado E. et al., Influence of the carbonization atmosphere on the development of highly microporous adsorbents tailored to CO2 capture, Journal of the Energy Institute, 102, 184-189, (2022-06-01). doi:10.1016/j.joei.2022.03.003 (8 citas)
  8. Gomez-Delgado E. et al., Agroindustrial waste conversion into ultramicroporous activated carbons for greenhouse gases adsorption-based processes, Bioresource Technology Reports, 18, 101008, (2022-06-01). doi:10.1016/j.biteb.2022.101008 (5 citas)
  9. Messina L.G. et al., Toward bioenergy sustainable generation from lignocellulosic biomass pyrolysis, Advances in Energy Research. Volume 36, (2022-05-26). SCOPUS_ID:85136756328 (0 citas)
  10. Cukierman A.L. et al., Strategies for sustainable synthesis processes of nanocarbons from biomass, Bio-Based Nanomaterials: Synthesis Protocols, Mechanisms and Applications, (2022-01-01). SCOPUS_ID:85129900745 (0 citas)
  11. Gómez-Delgado E.E. et al., Invasive wood derived nanoporous carbons for mitigation of water and air pollution, Invasive Species: Ecology, Impacts, and Potential Uses, (2020-06-16). SCOPUS_ID:85126927351 (2 citas)
  12. Suarez Anzorena R. et al., Hierarchical, template-free self-assembly morphologies in CeO2 synthesized via urea-hydrothermal method, Ceramics International, 46, 11776-11785, (2020-06-01). doi:10.1016/j.ceramint.2020.01.212 (7 citas)
  13. Gomez-Delgado E. et al., Tailoring activated carbons from Pinus canariensis cones for post-combustion CO2 capture, Environmental Science and Pollution Research, 27, 13915-13929, (2020-04-01). doi:10.1007/s11356-020-07830-4 (22 citas)
  14. Gomez-Delgado E. et al., Development of microporous-activated carbons derived from two renewable precursors for CO2 capture, Carbon Letters, 30, 155-164, (2020-04-01). doi:10.1007/s42823-019-00079-z (13 citas)
  15. Cukierman A.L. et al., POTENTIALITIES OF BIOCHARS FROM DIFFERENT BIOMASSES FOR CLIMATE CHANGE ABATEMENT BY CARBON CAPTURE AND SOIL AMELIORATION, Encyclopedia of Climate Change: Volume 11: (11 Volume Set), (2020-01-01). SCOPUS_ID:85176374282 (0 citas)
  16. Gurevich Messina L.I. et al., Potential uses of Cassava Bagasse for Bioenergy Generation by Pyrolysis and Copyrolysis with a Lignocellulosic Waste, Encyclopedia of Plant Science Volume: (12 Volume Set), (2020-01-01). SCOPUS_ID:85169386604 (0 citas)
  17. Cukierman A.L. et al., Removal of emerging pollutants from water through adsorption onto carbon-based materials, Emerging and Nanomaterial Contaminants in Wastewater: Advanced Treatment Technologies, (2019-10-25). SCOPUS_ID:85080840844 (25 citas)
  18. Cukierman A.L. et al., Capture of water contaminants by a new generation of sorbents based on graphene and related materials, Nanotechnology for Sustainable Water Resources, (2018-02-20). SCOPUS_ID:85050448227 (6 citas)
  19. Kim M. et al., Co-pyrolysis of polyethylene terephthalate (PET) bottle waste and poplar wood sawdust: Kinetics and char characterization, Municipal and Industrial Waste: Sources, Management Practices and Future Challenges, (2018-01-01). SCOPUS_ID:85048431285 (1 citas)
  20. Schwengber A. et al., Development and in vitro evaluation of potential electromodulated transdermal drug delivery systems based on carbon nanotube buckypapers, Materials Science and Engineering C, 76, 431-438, (2017-07-01). doi:10.1016/j.msec.2017.03.115 (9 citas)
  21. Platero E. et al., Graphene oxide/alginate beads as adsorbents: Influence of the load and the drying method on their physicochemical-mechanical properties and adsorptive performance, Journal of Colloid and Interface Science, 491, 1-12, (2017-04-01). doi:10.1016/j.jcis.2016.12.014 (69 citas)
  22. Gurevich Messina L. et al., Effect of acid pretreatment and process temperature on characteristics and yields of pyrolysis products of peanut shells, Renewable Energy, 114, 697-707, (2017-01-01). doi:10.1016/j.renene.2017.07.065 (48 citas)
  23. Gurevich Messina L.I. et al., Potential uses of cassava bagasse for bioenergy generation by pyrolysis and copyrolysis with a lignocellulosic waste, Handbook on Cassava: Production, Potential Uses and Recent Advances, (2017-01-01). SCOPUS_ID:85020128833 (2 citas)
  24. Cukierman A. et al., Agricultural wastes as potential feedstock for activated carbons development, Agricultural Research Updates, (2017-01-01). SCOPUS_ID:85020071937 (5 citas)
  25. Gurevich Messina L. et al., In-situ catalytic pyrolysis of peanut shells using modified natural zeolite, Fuel Processing Technology, 159, 160-167, (2017-01-01). doi:10.1016/j.fuproc.2017.01.032 (48 citas)